PHYSICAL REVIEW E VOLUME 60, NUMBER 3 SEPTEMBER 1999
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We study the evolution of a solitary pulse in the cubic complex Ginzburg-Landau equation, including the
third-order dispersiofTOD) as a small perturbation. We develop analytical approximations, which yield a
TOD-induced velocityc of the pulse as a function of the ratid of the second-order dispersion and filtering
coefficients. The analytical predictions show agreement with the direct numerical simulations for two dinstict
intervals ofD. A new feature of the pulse motion, which is a precursor of the transition to blowup, is presented:
The pulse suddenly acquires a large acceleration in the reverse direction @t,~ — 1.5 and without the
reversal aD<D,. It is also demonstrated that the laminar-propagation distandeefore the onset of the
ultimate turbulent stagdbecomes maximum deep inside the normal-dispersion region, while TOD significantly
increased in the anomalous-dispersion region, where, otherwise, it is quite small. The model has a straight-
forward physical realization in terms of nonlinear optical fibers with losses and bandwidth-limited amplifica-
tion (gain and filtering. [S1063-651X%99)07709-(

PACS numbeps): 42.81.Dp, 41.20.Jb, 42.81.Wg

I. INTRODUCTION AND FORMULATION turbation theory, developed in R¢&], produced very accu-
OF THE MODEL rate results as compared to direct simulations. At the first
stage, this version of the perturbation theory took into regard
As is commonly known, the existence and stability of & soliton’s phase structure generated by TOD and, at the
solitons(which we realize here simply as localized pu)ses ~ second stage, the balance equation for the momentum of the
various physical systems is provided by the balance betwee$pliton was used to calculate its stationary frequency shift
the second-order dispersiofSOD) and nonlinear self- induced jointly by TOD and the bandwidth-limited gain.
focusing. In many cases, and especially in such an important ' "€ objective of the present work is to study the effect
application as the temporal and spatial solitons in nonlineaProduced by the weak TOD in a broad physically relevant
optics [1], the nonlinearity is weak, therefore, the solitons "€9ion of the parameters, where filtering is not a small per-
cannot be generated unless one is using a carrier wavelen bation. In thg notation adopted.for the optical fibEth
close to the zero-dispersion poi@DP), where SOD is weak e corresponding general model is
too. In this case, however, two other linear effects may be-
come conspicuous, viz., the third-order dispers{@i®D)
and filtering (dispersive lossgs TOD is always present in
any physical system, and there is no reason to expect that it
would vanish at ZDP, where the SOD coefficient vanisheswhereu(z, r) is the amplitude of the electromagnetic waze,
The natural filtering, existing due to the fact that the loss-and  are the propagation distance and the so-called reduced
compensating amplification is alwapandwidth limitegcan  time, D is the ratio of SOD and filtering coefficien{she
be enhanced by the narrow-passband filters, that are usualigtter one is normalized, as well as the gain and nonlinear
inserted into the long fiber link in order to suppress the soli-coefficients, to be= 1), ande is the relative TOD coefficient.
ton jitter [2]. In other physical systems where the solitary Thus, the model has two dimensionless control parameters:
pulses are observed, dispersive losses also appear naturalty;which can always be defined to be positive, &ndvhose
for instance, in the traveling-wave convection in binary flu- positive and negative values are nonequivalent, correspond-
ids, an experimentally measured coefficient of the dispersivéng, respectively, to th@nomalousand normal SOD [1].
losseg(diffusivity) is known to be essentially larger than the Note that, following the generally adopted assumption, Eqg.
SOD coefficien{3]. (1) treats the amplification and filtering in the distributed
The situation in which the terms accounting for both fil- approximation. Nonlinear losses can also be added to the
tering and TOD may be regarded as small perturbationsnodel, but in both physical applications for which the model
added to the nonlinear Schinger (NLS) equation was is well established, viz., the optical fibers and traveling-wave
studied in detail in terms of the soliton propagation in non-convection, the nonlinear losses are usually negligible.
linear optical fiberd4,5]. In particular, a “two-stage” per- To estimate relevant values of the control parameters, we
recall that the gain bandwidth of the Er-doped optical ampli-
fiers is Aw~1THz [6], which can be easily reduced by
*Electronic address: malomed@eng.tau.ac.il means of filters down t&\ w~100 GHz and further. With
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regard to the normal valug~0.05 km * (tantamount to 0.2  (second term in the TOD-induced perturbation is found by
dB/km) of the fiber loss to be compensated by the amplifi-means of the momentum-balance equation, i.e., essentially
cation[1], we conclude that the unrenormalized filtering co-the same way as it was done for the perturbed NLS solitons
efficient, '~ y/(Aw)?, can readily take any value from the in [5]. Formally, the momentum balance can be applied
interval 0.05-5 p¥km. As for the unrenormalized SOD co- when the parametd is positive and large enoudivhen the
efficient 8,, in the standard telecommunication fibel8;| contributions from both perturbation terms turn out to be
=20pg/km [1]. Thus, D=4,/T takes values from the comparable However, the relative contribution of the sec-
broad interval D| <400. ond term, as compared to the exactly found velocity pro-
An expression for the dimensionless TOD coefficierir duced by the first one, vanishesD asD— 0. Thanks to this
Eq. (1) is, in terms of the physical parameters, circumstance, the combination of the two terms yields an
= (1/6)B3/T"%? whereps is the standardunrenormalizell  analytical approximation that is found to be in a fairly rea-
TOD coefficients, and" is the above-mentioned filtering co- sonable agreement with the numerical results not only at all
efficient. A typical value of the TOD coefficient in the stan- 1o valuesD=0, but also at negativ® up toD=—1.5.
dard telecommunication fiber j5|<0.1 ps/km, but it may In Sec. Il we develop another analytical approximation

be made much smaller in the so-called dispersion-flattene]qJr the case wheiD is negative and large. In this case, the

fibers[1]. In this work, most numerical results at moderate . O .
TN -3 ) unperturbed puls€) is very broad, which suggests applying

values of D|(|D|~1) will be presented foe~10~%, which the so-called geometric-opti¢§0) (or eikona) approxima-

corresponds 10" ~5 ps/km (i.e., relatively strong f||ter|ng, tion, based on the assumption that the local amplitude, wave
that provides for more stable pulse transmission in the stan-

dard telecommunication fiber link or to the dispersion- numper, and.frequen'cy of the wave figld are slqwly varying
flattened fibers. Larger values @f in combination with functions. This technique, developed n-an earlier V.\@k
ID|~1, give rise to very complex dynamics, because ofvas recently used to succe_ssfully_ predict the_ velocity of the
which they are less relevant for the applications. This cas&0-called dark shock wave in a simpler version of the CGL
may be, nevertheless, interesting by itself, and will be Con_equatlon[9]. We demonstrate that, in this case, the soliton’s
sidered in detail elsewher@evertheless, we display some Velocity takes a limitconstantvalue, c=(3)e, which is
essential results, viz., the stable-propagation distand®,vs found to be in very good agreement with the numerical re-
for e~10"2 too). In contrast with this, at sufficiently large sults forD= — 30.
negativeD (deep inside the normal-dispersion regidghe In Sec. IV, we present results of systematic numerical
pulse propagation turns out to be very robust, irrespective asimulations of the model. Comparing the numerically found
the smallness of, and is amenable to analytical treatmentdependence(D) with the two above-mentioned analytical
(see Sec. Il beloy Actually, this case is most promising for predictions, we find the agreement, as was already men-
the applications to the optical telecommunicati¢rik tioned above, in two region® < —30 andD > —1.5. In the

In the cases =0, when Eq(1) is the well-known complex gap between them, neither approximation applies, and there
Ginzburg-Landau(CGL) equation, the pulsddissipative we find novel features in the depende¢®), viz., a very

soliton) is described by the well-known exact solutifsl, steep downjump, with a change of the signcpat D=D,
, ) ~—1.5, and a smoother transition in the opposite direction
U= Ao sectixr)]* 4, (2)  at—30<D<—20 (see Fig. 4 beloy
As well as the CGL equation, the mod@) is inherently
K?=3(1+ud) ", Ad=u Y(4+u?, k=1iD«? unstable, as it contains the linear-gain term. This instability

(38 is a well-known drawback of the exact soluti¢?), which,
however, did not impede its successful use in various con-

the pulse’schirp being texts. The instability demonstrates itself in the form of a
blowup that switches the system into a turbulent state. How-
uw=\=D?+2-2D. (3b)  ever, the blowup follows a relatively long period of regular

(“laminar™ ) evolution of the puls¢which makes it possible
The first objective of this work is to find the soliton’s veloc- to measure numerically the dependen¢B)]. Moreover, in
ity generated by the small TOD term. A natural approach tgparticular physical applications the blowup can be prevented
this is to use the exact solutigql3) as the zeroth-order ap- by various meange.g., circulating an optical pulse in a fiber
proximation and develop the perturbation theory around itloop [10], or, in the case of the traveling-wave convection
However, a complete analysis of E@) linearized around [3], taking into regard the fact that, in the real experiment,
the solution(3), which is the basis for the formal perturba- the pulse is circulating in an annul{isl]). In any case, for
tion theory, is a cumbersome mathematical problem. In thishe applications it is very important to know not only the
work, we are able to find an approximate analytical solutiondependence(D), but also the laminar-propagation distance
for the velocity (corroborated by direct simulationgh two L as a function ofD. This dependence is also displayed in
cases. In Sec. Il, we develop a direct perturbation theorySec. 1V, showing thak is much larger for sufficiently large
splitting the TOD-induced perturbation into two terms. ThenegativeD than at its other values. The latter result lends
first term is tantamount to a complex group-velocity shift, more value to the above-mentioned analytical prediction of
which allows us to obtain aexactresult produced by this the asymptotic velocityg= 3¢, valid in the same region. As
term at the first order of the perturbation thedagy ZDP,D for the influence of TOD, we find that it is significant Bt
=0, this yields an exadull value of the velocity in a very =3, makingL larger(which is, otherwise, quite small in this
simple form:c=¢). An effect produced by the remaining case. Additionally, we find a new feature, viz., @ecursor
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of the blowup, in the form of sudden acceleration or decel+Finally, adding up the expressio8) and (7), we arrive at
eration of the moving pulse at the last stage of its laminaan eventual analytical prediction for the soliton’s velocity

evolution. provided by the perturbation theory:

In Sec. IV, we also briefly consider a modified model,
with sIiding-frequen_cyfiltering, yvhich __is a WeII-I_<nown ¢ 1+2D%-3:D\D?+2
means for suppression of the soliton’s jitter in the fiber com- P P— —- 8
munication lineg12]. The simulations demonstrate that the 1+3D°—3D2D“+2
frequency sliding slightly increases the laminar-propagation ) ) ) )
distance. Note that, according to this expression,vanishes atD

=2 andc/e=1 atD=0. The latter result i®xact as the
second perturbation term in E¢4), that cannot be treated
exactly, vanishes dd=0.

It is well known that, in the absence of filtering, the effect One should bear in mind that the applicability of the
of TOD on the NLS soliton can be analyzed by means of themomentum-balance equation is, strictly speaking, limited to
perturbation theory13]. Here, our aim is to develop a per- the case of sufficiently large positive values®f when the
turbative treatment of TOD acting on the CGL pul&2. pulse(2) is close to the NLS soliton, and the filtering term in

Treating the TOD term on the right-hand side of Ef.in Eqg. (1) is small as compared to the dispersion, otherwise the
the first order of the perturbation theory, we substitute theequation does not approximately conserve the momentum
expression2) into it, and notice that exactly the same per- even at the zero ordet=0. Nevertheless, the comparison of
turbation would be produced, at the first order, by the fol-the analytical prediction foc(D) given by Eq.(8) with the
lowing effective perturbation replacing the right-hand side ofdirect simulationgsee Sec. IYwill show good agreement at
Eq. (2): D>—1.5. The agreement can be easily explained: with the

) ) decrease ob from large positive values, where the approxi-
Pey=—icu,+id|u|?u,, (4 mation must work automatically, the contributi6®) from
the second term in the effective perturbati@ indeed be-
comes inaccurate, but it decrease®, while the dominant
(5 (nonvanishing contribution(6) from the first term isexact

Il. PERTURBATION THEORY FOR THE PULSE

=—3e(l+ip)?(1+u? 1
d=—3eu(3+in)(1+u?) Y(2-in)

The effect of the first effective perturbation term, which is IIl. GEOMETRIC-OPTICS APPROXIMATION
nothing else but a complex group velocity, can be taken into e Go approximation can be applied to fields with

account in an obvious way: 1one first makes the substitutiogbww varying local amplitude, wave number, and frequency

U=Texp(-ior), with w=—3Imc, which eliminates the [g] As it follows from the form of the exact unperturbed
imaginary part of the complex group velocityand, through ulse solution(2) and (3), a natural case for this is-D
the SOD term, simultaneously gives rise to an additional, 1 \when the pulse is broad, its width being 2

contribution to the real part of, A(Rec)=—Dw=3DImc. ~(V3/2)|D.

Finally, the remaining net real part ofimplies that sech() We start from the representation of the complex field in
in the solitary-pulse solutior(2) should be replaced by iha form

sechx(r—c2)] with the effective velocity c;=Rec

+3DImc. Using the above expressions, the latter result can u(z,7)=a(z,rexdie(z,7)], 9

be cast into the following form:

wherea and ¢ are the real amplitude and phase. Insertion of

c, 1+%¥D?*-3D\5D?+2 © Eq. (9) into Eq.(1) leads to coupled real equations ferand

- = . 6 that have a rather cumbersome form. To simplify them, we
32 11 (o2 ¢ : p '

¢ 1+3Db°-3D D12 now resort to the GO approximation, which assumes that the

Th d in Ed4 b di amplitude« and the local wave numbes, and frequency
e second term in Eq4) cannot be treated in an exact _ e sjowly varying functions of, so that theirr deriva-

way, unlike what was done above with the first term. In th'stives are small quantities. However, to be consistently imple-

case, the only s_tra|ghtforvvard appranch can be based on tr?1‘?ented, this approximation needs a large parameter in Eq.
balance equation for the soliton’s momentun\] =

Dt i (1). It will be seen below that the necessary large parameter
—ifIuuidr, where the asterisk stands for the complexig _p

conjugation. The balance implies vanishing of the net sum of " | 5 easy to see that the first real equation obtained by the
the_ forces_Le._, contr|but_|ons todM/dz, generated by the g pstitution of Eq(9) into Eq. (1), viz., the evolution equa-
gain and filtering terms in Ed1) and the second perturba- (o for the phase, contains terms of the zero order with

tion term in Eq.(4), for the soliton moving at some velocity respect to the GO smallness. Keeping only these terms, we
c,. The calculations can be easily performed, following thegptain the first simplified equation in the form

lines of Ref.[5], which yields an additional contribution to

the velocity, cf. Eq.(6): a?= g, + %D(prr 8¢§_ (10)
c, DV&D?+2-2D? The second equation, which governs the evolution of the
—= . (7) amplitude, contains the zero-order terms, and, in addition to
& 1+3D%-iDVD?%+2 them, several terms of the first order which are multiplied by
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the large parametdd. It will be verified below that the self- and the values gb providing fora?=0 are, according to Eq.
consistent approximation implies that the laf@d compen-  (14),
sates the first-order GO smallness. With regard to this, the
second equatiorimultiplied by 2x) can be written in the po=*—2k/D. (18)
form
) 5 ) Because Eq(17) is the first-order ordinary differential equa-

2aa,+D(a"¢ +2aa,¢,) tbeaa, @7+ 600, ¢, tion, its only possible nontrivial solution with the asymptotic

=2a%—2a%¢2. (11) values(18) at é=+x is an antisymmetri¢p(— &) =p(¢é)]

4 kink, which takes all the values from the interval
The terms~¢ are kept in this equatiofas well as in Eq.
(10)] as a small correction that will later give rise to the |p(&é)|<—2k/D. (19
soliton’s velocity. To summarize, the terms omitted when
deriving the simplified equationd0) and(11) from Eq. (1) Here, however, we encounter a problem, because, inside the
are those containing the first- and second-order GO smalinterval(19), there are two values= = y—2k/3D, at which
ness in the filtering term on the right-hand side of B,  the denominator of the right-hand side of Ef7) vanishes,
and the second- and third-order smallness in the thirdhence the solution will be singular. Indeed, straightforward
dispersion term. integration of Eq(17) shows that, in a vicinity of a poirg,
A solution to Eqs(10) and(11) that describes a traveling at whichp= =/ —2k/3D, the form of the solution is

soliton is looked for as
(pF \—2k/3D)%~ ¥ (2/3D)?\/— 2k/3D (3D + 2k) (£ — &).

a=a(t—C2), ¢=kz+y(r—C2), (12 20
wherek is a constant. Then, in terms of As it follows from Eq.(20), the only way to avoid the sin-
p=dyldé, é=7—cz, (13 gularity is to set
Eq. (10) transforms into a simple algebraic relation, k=-32D, (21)
o?=p, + %D(PEJFS(PE_ (14) which yields the unknown eigenvalue in the present approxi-

mation. From the viewpoint of Eq17), this implies that the
Substituting Eq.(13) into Eq. (11), we make use of a expression multiplyingdp/dé vanishes at the same point,

relation obtained by the differentiation of E(.4), p?=1, at which the multiplier (- p®) on the right-hand side
vanishes. It then follows from Ed18) that the asymptotic
d(a?)/dé=(Dp-c+3ep?)(dp/dg). (15  Wwave numbers arpj=3.

In the next approximation, we demand that, in the first
One should also recall thatis an independent small param- order with respect to the small parameterandc, the same
eter, and the velocite sought for is expected to bee, mechanism of canceling the singularity holds in E#6),

hence it has the same smallness adlaking use of Eq(15),  i.e., the expression multiplyinglp/d¢é must vanish atp?
and omitting the second-order termsc?, 2, andce, we = 1. A straightforward calculation yields
finally cast Eq.(11) into the form
cle=1/3. (22
3
Chn2 _ 3 _
D(z Dp®+k|=3cDp+10:Dp™+6ekp dé This is the eventualand fairly simplé analytical result pre-
1 dicting the soliton’s velocity for-D>1.
=2(1—p2)<k—cp+ EDp2+sp3). (16)

IV. NUMERICAL RESULTS AND THEIR

This is a “master equation” in the present caseD>1. INTERPRETATION

A soliton solution is singled out by the obvious boundary  we performed systematic simulations of the CGL equa-
conditions,a(é=*=)=0. As it follows from Eq.(14), the  tion (1) with small values of the TOD parameter Most
variablep(&), which is governed by Eq16), must take, at results displayed below pertain to=10"%, which, as was
¢=+, constant valuep, which nullify the right-hand side explained in the Introduction, is the value of practical inter-
of Eqg. (14). Thus, Eq.(16) must be complemented by the est for smallD and |D|~1. Some essential results are also
boundary conditiongip/dé=0 até=*+. As concerns the presented for =10 2. However, detailed results far es-
constantsk and c, they are, as a matter of fact, unknown sentially larger than 10° are not reported here in this region
eigenvalueshat must be found as a part of the solution.  of the values ofD|, as they are very compleence, they

First, we consider the zero-order approximatiorejrset-  are less interesting for the applicationand will be pre-
ting e=c=0. In this case, Eq.16) further simplifies: sented elsewhere. On the contrary to this, the results for suf-
ficiently large negativeD, when the pulse turns out to be
very robust, turn out to be essentially the same for all rea-

dp 2
2 T 1_Rn2 2
(3Dp™+2k) d¢é D (1=p7)(2k+Dp7), (17) sonably smalk (e.g.,e =102 ande=10"1). These results,
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FIG. 1. An example of the evolution of the pulse in the model
(1) atD=—18 ande =103, ending up with the onset of the “tur-
bulence” via the blowup.

FIG. 2. The laminar-propagation distance, defined as 80% of the
distance at which the blowup takes place, s The continuous
curve corresponds to the case 0, §=0, while the three different
dotted curves correspond to the following cases:0, 6=0.05; ¢
=102, §=0, ande=10"2, 5=0 [recall §is the frequency-sliding
which may also be of considerable interest for the appIicas|0pe in the modified modeR3)].
tions to the optical-fiber communications, are displayed be-
low.

As the initial configuration, we always took the exact

pulse solution given by Eq2)—(4). The simulations were opticgl fibers, _such finite—prppagation—lepgth result; are
run on the basis of a finite-difference scheme in a wide inPhysically meaningful, as the fiber's length in the experiment

terval of the variabler, that was always chosen to be much M&Y be shorter than is necessary for the onset of the blowup,

larger than the pulse’s width. In order to prevent the possibl@Ut 1ong enough to observ@nd usg nontrivial features in
radiation emitted by the pulse from reappearing in the intefhe preblowup ~dynamics, provided that the laminar-

gration domain, we used a standard device, placing narrolgroPagation distance essentially exceeds the putiiszer-
strongly absorbing layers at the edges of the domain. sion length see below. Moreover, as was mentioned in the

Because the linear-gain term makes the model intrinsiintroduction, in real physical systems the model can be

cally unstable, the evolution always ends with a transition tgnedified by means of the boundary conditions, so that the

a turbulentlike behavior through blowup. An example is dis-Pl0WUP will not take place at alle.g., in the fiber loop
played in Fig. 1 fore =103 andD = — 18. In this example, The numerically observed features reported below were

the blowup starts at the very end of the simulated propag collected from the propagation distances taken as 80% of the
ablowup-onset distance, in order to exclude the influence of

tion distance. Actually, at this value dD, the laminar- e - . :
propagation distance attains its maximum and is nearly inder-)oss'ble_ |rregul_ar|t_|es starting shortl)_/ before '_che onset. In this
connection, it is first of all interesting to display the data

pendent ofe, as will be discussed below. - ; .
In addition to the mode(1), we have also considered a showing this 80% distance vs both control parameters of the
’ - — 3
modified model, with the usudfixed-frequencyfiltering re- modeI,Dz ande. In Fig. 2, the data are shown fer=10
and 10 ~. These plots reveal noteworthy peculiarities: the

placed by thesliding-frequencyfiltering [12], which is a X ! , - I
popular means for suppression of Berdon-Haus jitterof solitary pulse remains stable much longer if the dispersion is
n hormal D <0, than when it imsnomalousD>0, and, on the

the soliton, induced by its interaction with the radiatio _ _
spontaneously emitted by the amplifiers. In view of the conOther hand, an almost flat maximum of the laminar-
siderable practical importance of the frequency sliding, it isPropagation distance is observed aroubd=—18. This
quite relevant to investigate its impact on the soliton dynam/h€ans that, on the contrary to what is commonly assumed,

ics in the present model. To this end, E&j). was modified as the best long-distance optical-pulse transmission may be
follows [12]: achieved in thenormal-dispersiorregime.

The strong stabilization observed at large negafivean
be qualitatively explained. The explanation given below is
. Lo related to the “perturbation-sweeping” mechanism that ex-
+21Qeu,—10RY, plains, for the CGL equation with the periodic boundary con-
(23)  ditions, an effective stability of the circulating pulse in a
parametric region where it was expected to be unstdlg
where Q=Q¢(2) is the sliding frequency, which is as- (see alsd14]).
sumed to be a linear function af Q(z) = 6z, with a real We start the explanation by noting that the linearization of
slope constan®. Eq. (1) yields the inverse group veloci§(w)=—Dw for a
A systematic study of basic features of the pulse’s evoludinear radiation mode with the frequeney and amplitude
tion before the blowup reveals a number of nontrivial fea-A;,u;~A; exp(—iw7) (here, we neglect a small contribution
tures that are summarized below. In the application to thérom TOD). This means that, at lard®|, the most danger-

iu,+(3D—i)u,,+|ulPu—iu=ieu

TTT
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ous destabilizing perturbations are those with a small fre-

guencyw, as, otherwise, the perturbation quickly traverses- 5F De-15
the integration domairincluding its part occupied by the N g
pulse, and is then absorbed at the edges. Besides that, the éé I D=-1
damping by the filtering term is negligible for the low- = D=0
frequency perturbation. Al

On the other hand, due to the presence of the self- =3l D=1
focusing cubic term, a low-frequensfowly movingpertur- §
bation can begtemporarily captured by the puls€) with 'g oL
the large amplitudeé\y~+/3|D| when the perturbation hits 5]
the pulse(note that, in a real optical communication line, one Z 1} e=10"
is dealing with a quasiperiodic chain of the pulses, hence the

absorbing boundary conditions replace, as a matter of fact,
the interaction of the radiation with the next pylsds a
result of the interaction with the pulseud), the low-

frgquenpy perturbation ggnerates, thro_ugh the four-wave FIG. 3. Trajectories of the pulse motion on the pldpesition,

m|X|rlg |nd;,|c*ed by the _CUb'C term, a conjugate Wav_e CompoIoropagation distangefor e=10"2 and various values ob. The

nentt; ~Ugu7 . According to Eqs(2) and(3), the conjugate gt acceleration of the pulse preceding the blowup is clearly

component has aonsmallfrequencyQ~2xu~2v3, and  geen.

an enhanced amplitud®, ~AZ2A, . These, in turn, give rise

to strong damping of the perturbation by the filtering term,

despite the circumstance that, for the original small fre-demonstrates an abrupt acceleration, but this time without

quencyo, the filtering effect is negligible. Even if we do not the reversal of the original direction of motion. The critical

take into regard the above-mentioned fact that the perturbasalueD,, of D, separating the cases of the reverse and direct

tion may be temporarily captured inside the pulse, the enacceleration, depends en it shifts farther into the normal-

hanced amplitude and nonsmall frequency of the conjugatglispersion region with the decrease ef for instance,

component predict the following estimate for the ratio of thep (¢ =10"%)~ —2.0.

stabilizing effectiveaverage filtering coefficierif to the de- The most essential result describing the soliton’s motion

stabilizing gain coefficienty: at the laminar stage, viz, the soliton’s normalized mean ve-
locity c/e, averaged over the above-mentioned 80% blowup
distance, vs the SOD paramef®yis presented in Fig. 4. As

~ 2n2 is seen in the inset of this pldtorresponding to the case
[1y~Q2A5(7o/T)~20D|(7o/T), (24 \where —10<D=<10 ande=10"3), there is a very steep

jump of the velocity at a critical valuB,, which, up to the

where 7, and T are, respectively, the temporal width of the accuracy of the numerical data, ise sameas that which

soliton and the size of the temporal doméactually, T the ~ Separates the reverse and direct accelerations in Fig. 3. To

temporal separation between adjacent pulses, in the case of

the pulse array in a long fiber communication )inend the

0 1 n L
02  -01 00 01 02
Normalized Time 7

above expressions fd; andQ have been used. The strong 0.4f PPN A
stabilization in the case of large negates evident in Eq. T, )\'—-\.x 5
(24). 0.2f £=10" RN

The laminar-propagation distance is not especially sensi- =10 N i
tive to the value of the TOD coefficient in the normal- " 0.0 ST
dispersion region, but Fig. 2 demonstrates a significhat S 4 i
bilizing effectof TOD in the region of anomalous dispersion. 02F 2 *ﬂ\ £=10" '\\
Note that a conspicuous stabilizing effect of TOD on the 0— f i 5
propagation of the “breathing”(vibrating pulses in the 04F of e ¥ !
dispersion-managememtodel, i.e., the lossless model with -4 A
periodically modulated sign-changing SOD coefficiBxiiz), 06 10 50 L
was discovered in Refl5]. Flna}lly, we see in Fig. 2 that 190 -160 -130 -100 70 40 -10
(quite naturally the frequency sliding increases the laminar- D

propagation distance, but the increase is quite modest.
The simulations also reveal a novel specific feature of the FIG. 4. Numerically found normalized soliton’s mean velocity,

last stage of the laminar eVOIUt'On_'s which precedes the,, corresponding to the propagation distance equal to 80% of the
blowup: as is seen in Fig. Gor 6=10"~), at the valued  powyp distance, veD(<—10) for three different values of
>D¢~—1.5, the pulse, shortly before the onset of the(19-3 1072 and 10'%). The horizontal solid line is the asymptotic
blowup, suddenly stops and then begins to move in the opyalue (22) analytically predicted for large negati& In the inset,
posite direction, demonstrating a strong acceleration. Somehe continuous curve shows the analytical prediction given by Eq.
times, this happens with intermediate stops and reversals @8) for positive and small negative values Bf while the dots are
the direction of motion. AD < — 1.5, the pulse’s motion also the numerical results obtained for=10"2.
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the right of the jump, the numerically found dependence V. CONCLUSION
c(D) is quite close to the analytical prediction given by Eq.
(8). In particular, in exact accord with the analysis, the nu-
merical and analytically predicted values of the velocity per-
ifﬁ;:tlg//gcglgude at the zero-dispersion polt=0, both giv- earity, linear gain, fixed- or inding-freque_ncy fi_Itering, _and,
AS Was .explained in Sec. II, it is natural to expect that theS @ small pertl_erathn, the third-order dispersion, while the
analytical resul(8) becomes.irr’elevant <0, A surprising second—order dispersion may be anomalous,. normal, or zero.
fact is that the departure of the numerical.results from the:Startlr.]g fro'm the exact localized-pulse solution t(.) the CGL
: " . equation without TOD, we developed a perturbation theory,
analytical prediction occurs relatively latat D~ —1.5),

nd bruptly. More work is n v to understand which treats a part of the effective perturbation generated
and so abruptly. viore work 1S necessary to understa By TOD in an exact way, while the other part is treated
cause for this steep jump.

A less steep transition of the velocity. in the o Ositeby means of the momentum-balance equation. The analytical
direction. is ser:an in Fig. 4, for various v};{lues o epps prediction for the TOD-induced velocity was compared to
' N . T numerical data, showing that the perturbative result is quite
=103, 102, and 101%). For example, in the case 9 P N

a3 " B accurate in the region of its applicability and beyond,
=107, this transition takes place betwe . 20 and provided the ratio of the second-order dispersion and filter-
—30, and, aD < — 30, the observed velocity is very close to

X ; ) ing coefficientsD is =—1.5. An alternative analytical ap-
the constant valu€?), analytically predicted in Sec. Ill for g y P

large negativeD. The latter result has an important purport proximation, based on the "geometric-optics™ technique,
: ’ : . X *was developed for large negati ielding an asymptoti-
as the laminar-propagation distance, to which the regajt P g gate y 9 ymp

o . cally constant velocity, which is found to be in good agree-
pertains, is very large just at large negatde

: - . t with th ical Its fd@ < — 30 (this, and still
Although the accuracy of the analytical predicti@®) is ment wi © numerical resuts (this, and sti

rod t g h tofi Ve larger, values of|D| are physically meaningful In the
expected 1o worsen asis increasedthe asymptotic analysis gap between the two regions of applicability of the analytical
explicitly assumed: to be a small parametgerthe predicted

; P RSN 1 approximations, novel features are found in the simulations:
asymptotic value/e =1/3 is reached foe =10"- and 10 at D~— 1.5, the dependence(D) makes an abrupt jump

as well. However, as is observed in Fig. 4, the region Wher%v- h the ch fi - h T
the prediction is correct gets shifted to the left: This is due t h'; otpgogiteandgireegti O':]S t;:(%l’ ;gcieaa%rggoéjr_tzrgnsﬁﬁn n

the fact that the larger values efmay only be compensated merical simulations also reveal another unexpected feature:

(for _the _a_pplicability of the predictio_ru:/azl{S) by better before the onset of the ultimate turbulent stage, the pulse
zgppllgabnlt)I/ of thg t?o a[iproxmatlor;,wwmch demands asuddenly develops a very large acceleration in the reverse
roader puise, and hence farger negative direction atD>— 1.5, and without the direction reversal at

As was mentioned above, the results obtained for the fib< 15

nite propagation distances are physically meaningful pro- Another set of the numerical results shows the depen-

Vi.dEd that the propagation distance ess_entia!ly exceeds tQiaence of the preblowup propagation distahoes the control
TSF’/GE;S'S”ZP”IQE‘OJ /g1e p;ulsetrgZ), Wh'Cht. IIT [l]h.zD q parameters. The most essential result is théboth its ab-
:T « 'LI‘D:(() '“d) oK /D0r2~ Ei es;t/agl? y hC 'PEA" solute value and the value normalized to the pulse’s disper-
pﬁ.sesdat <0, an ZD:WE K2:( J&’“ ) A for td.e UN- sion length is very large for sufficiently large negativie
chirped ones aD>0 [see _qs( )_ and(3)]. A few disper- (i.e., deep inside the normal-dispersion regidor which a
sion lengths is the propagation distance necessary for formgg, 5 jitative explanation is proposed. TOD does not conspicu-
tion of the SOIltgn' Usmg the data Erom Fig. 2,.we ConCIUdeously affectL in the normal-dispersion region, but stabilizes
that, fore =10"*, the ratio of the 80% blowup distancezg the propagation (increasing L) at D>0. Finally, the

is very large forD<—1, then itis~10 for —1<D<5, and o4 ency-sliding filtering only slightly increasésin com-
the ratio gets smaller fob >5, so that the results are less S{‘.)arison with the usual fixed-frequency sliding.

relevant in the latter region. This consideration demonstrates,
once again, the potential of the pulse transmission in the
filtered nonlinear optical fibers deep inside the normal-
dispersion region.

The velocity also depends on the value of the TOD coef- This work has been supported in part by the General Sec-
ficient . In the cases=10*, the dependence(D) for  retariat of Research and Technology of the Hellenic Ministry
|D|<10 is similar to that fore=10"2 (see inset of Fig. ¥  of Developmen{PENED-95 Grant Nos. 1242 and 644nd
with the jump shifted tdD .= — 2.0, so that the applicability by the Special Research Account of the University of Ath-
range for the analytical resu(B) slightly expands in this ens. Constructive discussions with Professor K. Tsakalis
case. However, the numerical results for the velocity at posi¢State University of Arizona, PhoenixProfessor D. Reisis
tive and relatively small negativé turn out to be very com- (University of Athens, Athens, Greeceand Professor G.
plex ate=10"2 (on the contrary to the simple results dis- Savvidy (Democritos Nuclear Research Center, Athens,
played above for sufficiently large negati at e =102 Greece are gratefully appreciated. B. A. M. appreciates the
and 10'Y). Detailed consideration of this case is beyond thehospitality of the Department of Physics, University of Ath-
framework of the present work. ens.

In this work, we have studied in detail evolution of the
solitary pulse (dissipative solitoh in the complex cubic
Ginzburg-Landau equation, which includes the Kerr nonlin-
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