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Dissipative solitons under the action of the third-order dispersion
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We study the evolution of a solitary pulse in the cubic complex Ginzburg-Landau equation, including the
third-order dispersion~TOD! as a small perturbation. We develop analytical approximations, which yield a
TOD-induced velocityc of the pulse as a function of the ratioD of the second-order dispersion and filtering
coefficients. The analytical predictions show agreement with the direct numerical simulations for two dinstict
intervals ofD. A new feature of the pulse motion, which is a precursor of the transition to blowup, is presented:
The pulse suddenly acquires a large acceleration in the reverse direction atD.Dcr'21.5 and without the
reversal atD,Dcr . It is also demonstrated that the laminar-propagation distanceL ~before the onset of the
ultimate turbulent stage! becomes maximum deep inside the normal-dispersion region, while TOD significantly
increasesL in the anomalous-dispersion region, where, otherwise, it is quite small. The model has a straight-
forward physical realization in terms of nonlinear optical fibers with losses and bandwidth-limited amplifica-
tion ~gain and filtering!. @S1063-651X~99!07709-0#

PACS number~s!: 42.81.Dp, 41.20.Jb, 42.81.Wg
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I. INTRODUCTION AND FORMULATION
OF THE MODEL

As is commonly known, the existence and stability
solitons~which we realize here simply as localized pulses! in
various physical systems is provided by the balance betw
the second-order dispersion~SOD! and nonlinear self-
focusing. In many cases, and especially in such an impor
application as the temporal and spatial solitons in nonlin
optics @1#, the nonlinearity is weak, therefore, the solito
cannot be generated unless one is using a carrier wavele
close to the zero-dispersion point~ZDP!, where SOD is weak
too. In this case, however, two other linear effects may
come conspicuous, viz., the third-order dispersion~TOD!
and filtering ~dispersive losses!. TOD is always present in
any physical system, and there is no reason to expect th
would vanish at ZDP, where the SOD coefficient vanish
The natural filtering, existing due to the fact that the lo
compensating amplification is alwaysbandwidth limited, can
be enhanced by the narrow-passband filters, that are us
inserted into the long fiber link in order to suppress the s
ton jitter @2#. In other physical systems where the solita
pulses are observed, dispersive losses also appear natu
for instance, in the traveling-wave convection in binary fl
ids, an experimentally measured coefficient of the dispers
losses~diffusivity! is known to be essentially larger than th
SOD coefficient@3#.

The situation in which the terms accounting for both fi
tering and TOD may be regarded as small perturbati
added to the nonlinear Schro¨dinger ~NLS! equation was
studied in detail in terms of the soliton propagation in no
linear optical fibers@4,5#. In particular, a ‘‘two-stage’’ per-
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turbation theory, developed in Ref.@5#, produced very accu-
rate results as compared to direct simulations. At the fi
stage, this version of the perturbation theory took into reg
a soliton’s phase structure generated by TOD and, at
second stage, the balance equation for the momentum o
soliton was used to calculate its stationary frequency s
induced jointly by TOD and the bandwidth-limited gain.

The objective of the present work is to study the effe
produced by the weak TOD in a broad physically releva
region of the parameters, where filtering is not a small p
turbation. In the notation adopted for the optical fibers@1#,
the corresponding general model is

iuz1S 1

2
D2 i Dutt1uuu2u2 iu5 i«uttt , ~1!

whereu(z,t) is the amplitude of the electromagnetic wavez
andt are the propagation distance and the so-called redu
time, D is the ratio of SOD and filtering coefficients~the
latter one is normalized, as well as the gain and nonlin
coefficients, to be[ 1!, and« is the relative TOD coefficient.
Thus, the model has two dimensionless control paramet
«, which can always be defined to be positive, andD, whose
positive and negative values are nonequivalent, correspo
ing, respectively, to theanomalousand normal SOD @1#.
Note that, following the generally adopted assumption, E
~1! treats the amplification and filtering in the distribute
approximation. Nonlinear losses can also be added to
model, but in both physical applications for which the mod
is well established, viz., the optical fibers and traveling-wa
convection, the nonlinear losses are usually negligible.

To estimate relevant values of the control parameters,
recall that the gain bandwidth of the Er-doped optical amp
fiers is Dv;1 THz @6#, which can be easily reduced b
means of filters down toDv;100 GHz and further. With
3324 © 1999 The American Physical Society
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PRE 60 3325DISSIPATIVE SOLITONS UNDER THE ACTION OF . . .
regard to the normal valueg'0.05 km21 ~tantamount to 0.2
dB/km! of the fiber loss to be compensated by the amp
cation@1#, we conclude that the unrenormalized filtering c
efficient, G;g/(Dv)2, can readily take any value from th
interval 0.05–5 ps2/km. As for the unrenormalized SOD co
efficient b2 , in the standard telecommunication fibers,ub2u
520 ps2/km @1#. Thus, D5b2 /G takes values from the
broad intervaluDu<400.

An expression for the dimensionless TOD coefficient« in
Eq. ~1! is, in terms of the physical parameters,«
5(1/6)b3 /G3/2, whereb3 is the standard~unrenormalized!
TOD coefficients, andG is the above-mentioned filtering co
efficient. A typical value of the TOD coefficient in the sta
dard telecommunication fiber isub3u<0.1 ps3/km, but it may
be made much smaller in the so-called dispersion-flatte
fibers @1#. In this work, most numerical results at modera
values ofuDu(uDu;1) will be presented for«;1023, which
corresponds toG;5 ps2/km ~i.e., relatively strong filtering,
that provides for more stable pulse transmission in the s
dard telecommunication fiber link!, or to the dispersion-
flattened fibers. Larger values of«, in combination with
uDu;1, give rise to very complex dynamics, because
which they are less relevant for the applications. This c
may be, nevertheless, interesting by itself, and will be c
sidered in detail elsewhere~nevertheless, we display som
essential results, viz., the stable-propagation distance vD,
for «;1022 too!. In contrast with this, at sufficiently larg
negativeD ~deep inside the normal-dispersion region! the
pulse propagation turns out to be very robust, irrespectiv
the smallness of«, and is amenable to analytical treatme
~see Sec. III below!. Actually, this case is most promising fo
the applications to the optical telecommunications@7#.

In the case«50, when Eq.~1! is the well-known complex
Ginzburg-Landau~CGL! equation, the pulse~dissipative
soliton! is described by the well-known exact solution@6#,

u05A0eikz@sech~kt!#11 im, ~2!

k253~11m2!21, A0
25m21~41m2!, k5 1

2 Dk2,
~3a!

the pulse’schirp being

m5A 9
16 D2122 3

4 D. ~3b!

The first objective of this work is to find the soliton’s velo
ity generated by the small TOD term. A natural approach
this is to use the exact solution~3! as the zeroth-order ap
proximation and develop the perturbation theory around
However, a complete analysis of Eq.~1! linearized around
the solution~3!, which is the basis for the formal perturba
tion theory, is a cumbersome mathematical problem. In
work, we are able to find an approximate analytical solut
for the velocity~corroborated by direct simulations! in two
cases. In Sec. II, we develop a direct perturbation the
splitting the TOD-induced perturbation into two terms. T
first term is tantamount to a complex group-velocity sh
which allows us to obtain anexact result produced by this
term at the first order of the perturbation theory~at ZDP,D
50, this yields an exactfull value of the velocity in a very
simple form: c5«). An effect produced by the remainin
-
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~second! term in the TOD-induced perturbation is found b
means of the momentum-balance equation, i.e., essent
the same way as it was done for the perturbed NLS solit
in @5#. Formally, the momentum balance can be appl
when the parameterD is positive and large enough~when the
contributions from both perturbation terms turn out to
comparable!. However, the relative contribution of the se
ond term, as compared to the exactly found velocity p
duced by the first one, vanishes;D asD→0. Thanks to this
circumstance, the combination of the two terms yields
analytical approximation that is found to be in a fairly re
sonable agreement with the numerical results not only a
the valuesD>0, but also at negativeD up to D521.5.

In Sec. III we develop another analytical approximati
for the case whenD is negative and large. In this case, th
unperturbed pulse~2! is very broad, which suggests applyin
the so-called geometric-optics~GO! ~or eikonal! approxima-
tion, based on the assumption that the local amplitude, w
number, and frequency of the wave field are slowly varyi
functions. This technique, developed in an earlier work@8#,
was recently used to successfully predict the velocity of
so-called dark shock wave in a simpler version of the C
equation@9#. We demonstrate that, in this case, the solito

velocity takes a limitconstant value, c5( 1
3 )«, which is

found to be in very good agreement with the numerical
sults forD<230.

In Sec. IV, we present results of systematic numeri
simulations of the model. Comparing the numerically fou
dependencec(D) with the two above-mentioned analytica
predictions, we find the agreement, as was already m
tioned above, in two regions,D<230 andD.21.5. In the
gap between them, neither approximation applies, and th
we find novel features in the dependencec(D), viz., a very
steep downjump, with a change of the sign ofc, at D5Dcr
'21.5, and a smoother transition in the opposite direct
at 230,D,220 ~see Fig. 4 below!.

As well as the CGL equation, the model~1! is inherently
unstable, as it contains the linear-gain term. This instabi
is a well-known drawback of the exact solution~2!, which,
however, did not impede its successful use in various c
texts. The instability demonstrates itself in the form of
blowup that switches the system into a turbulent state. Ho
ever, the blowup follows a relatively long period of regul
~‘‘laminar’’ ! evolution of the pulse@which makes it possible
to measure numerically the dependencec(D)]. Moreover, in
particular physical applications the blowup can be preven
by various means~e.g., circulating an optical pulse in a fibe
loop @10#, or, in the case of the traveling-wave convecti
@3#, taking into regard the fact that, in the real experime
the pulse is circulating in an annulus@11#!. In any case, for
the applications it is very important to know not only th
dependencec(D), but also the laminar-propagation distan
L as a function ofD. This dependence is also displayed
Sec. IV, showing thatL is much larger for sufficiently large
negativeD than at its other values. The latter result len
more value to the above-mentioned analytical prediction
the asymptotic velocity,c5 1

3 «, valid in the same region. As
for the influence of TOD, we find that it is significant atD
>3, makingL larger~which is, otherwise, quite small in thi
case!. Additionally, we find a new feature, viz., aprecursor
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3326 PRE 60BORIS A. MALOMED et al.
of the blowup, in the form of sudden acceleration or dec
eration of the moving pulse at the last stage of its lami
evolution.

In Sec. IV, we also briefly consider a modified mod
with sliding-frequencyfiltering, which is a well-known
means for suppression of the soliton’s jitter in the fiber co
munication lines@12#. The simulations demonstrate that th
frequency sliding slightly increases the laminar-propagat
distance.

II. PERTURBATION THEORY FOR THE PULSE

It is well known that, in the absence of filtering, the effe
of TOD on the NLS soliton can be analyzed by means of
perturbation theory@13#. Here, our aim is to develop a pe
turbative treatment of TOD acting on the CGL pulse~2!.

Treating the TOD term on the right-hand side of Eq.~1! in
the first order of the perturbation theory, we substitute
expression~2! into it, and notice that exactly the same pe
turbation would be produced, at the first order, by the f
lowing effective perturbation replacing the right-hand side
Eq. ~1!:

Peff52 icut1 iduuu2ut , ~4!

c[23«~11 im!2~11m2!21,
~5!

d[23«m~31 im!~11m2!21~22 im!21.

The effect of the first effective perturbation term, which
nothing else but a complex group velocity, can be taken i
account in an obvious way: one first makes the substitu
u[ũ exp(2ivt), with v52 1

2 Im c, which eliminates the
imaginary part of the complex group velocityc, and, through
the SOD term, simultaneously gives rise to an additio
contribution to the real part ofc, D(Rec)52Dv[1

2D Im c.
Finally, the remaining net real part ofc implies that sech(kt)
in the solitary-pulse solution~2! should be replaced by
sech@k(t2c1z)# with the effective velocity c15Rec
11

2D Im c. Using the above expressions, the latter result
be cast into the following form:

c1

«
5

11 15
8 D22 5

2 DA 9
16 D212

11 3
8 D22 1

2 DA 9
16

D212
. ~6!

The second term in Eq.~4! cannot be treated in an exa
way, unlike what was done above with the first term. In t
case, the only straightforward approach can be based on
balance equation for the soliton’s momentum,M5
2 i *2`

1`uut* dt, where the asterisk stands for the compl
conjugation. The balance implies vanishing of the net sum
the forces, i.e., contributions todM/dz, generated by the
gain and filtering terms in Eq.~1! and the second perturba
tion term in Eq.~4!, for the soliton moving at some velocit
c2 . The calculations can be easily performed, following t
lines of Ref.@5#, which yields an additional contribution t
the velocity, cf. Eq.~6!:

c2

«
5

DA 9
16 D2122 3

4 D2

11 3
8 D22 1

2 DA 9
16 D212

. ~7!
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Finally, adding up the expressions~6! and ~7!, we arrive at
an eventual analytical prediction for the soliton’s veloc
provided by the perturbation theory:

c

«
5

11 9
8 D22 3

2 DA 9
16 D212

11 3
8 D22 1

2 DA 9
16

D212
. ~8!

Note that, according to this expression,c vanishes atD
5 2

3 , andc/«51 at D50. The latter result isexact, as the
second perturbation term in Eq.~4!, that cannot be treated
exactly, vanishes atD50.

One should bear in mind that the applicability of th
momentum-balance equation is, strictly speaking, limited
the case of sufficiently large positive values ofD, when the
pulse~2! is close to the NLS soliton, and the filtering term
Eq. ~1! is small as compared to the dispersion, otherwise
equation does not approximately conserve the momen
even at the zero order,«50. Nevertheless, the comparison
the analytical prediction forc(D) given by Eq.~8! with the
direct simulations~see Sec. IV! will show good agreement a
D.21.5. The agreement can be easily explained: with
decrease ofD from large positive values, where the approx
mation must work automatically, the contribution~7! from
the second term in the effective perturbation~4! indeed be-
comes inaccurate, but it decreases;D, while the dominant
~nonvanishing! contribution~6! from the first term isexact.

III. GEOMETRIC-OPTICS APPROXIMATION

The GO approximation can be applied to fields w
slowly varying local amplitude, wave number, and frequen
@8#. As it follows from the form of the exact unperturbe
pulse solution~2! and ~3!, a natural case for this is2D
@1, when the pulse is broad, its width being;k21

'()/2)uDu.
We start from the representation of the complex field

the form

u~z,t!5a~z,t!exp@ iw~z,t!#, ~9!

wherea andw are the real amplitude and phase. Insertion
Eq. ~9! into Eq.~1! leads to coupled real equations fora and
w that have a rather cumbersome form. To simplify them,
now resort to the GO approximation, which assumes that
amplitudea and the local wave numberwz and frequency
2wt are slowly varying functions oft, so that theirt deriva-
tives are small quantities. However, to be consistently imp
mented, this approximation needs a large parameter in
~1!. It will be seen below that the necessary large param
is 2D.

It is easy to see that the first real equation obtained by
substitution of Eq.~9! into Eq. ~1!, viz., the evolution equa-
tion for the phase, contains terms of the zero order w
respect to the GO smallness. Keeping only these terms
obtain the first simplified equation in the form

a25wz1
1
2 Dwt

21«wt
3. ~10!

The second equation, which governs the evolution of
amplitude, contains the zero-order terms, and, in addition
them, several terms of the first order which are multiplied
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the large parameterD. It will be verified below that the self-
consistent approximation implies that the largeuDu compen-
sates the first-order GO smallness. With regard to this,
second equation~multiplied by 2a! can be written in the
form

2aaz1D~a2wtt12aatwt!16«aatwt
216«a2wtwtt

52a322a2wt
2. ~11!

The terms;« are kept in this equation@as well as in Eq.
~10!# as a small correction that will later give rise to th
soliton’s velocity. To summarize, the terms omitted wh
deriving the simplified equations~10! and ~11! from Eq. ~1!
are those containing the first- and second-order GO sm
ness in the filtering term on the right-hand side of Eq.~1!,
and the second- and third-order smallness in the th
dispersion term.

A solution to Eqs.~10! and~11! that describes a travelin
soliton is looked for as

a5a~t2cz!, w5kz1c~t2cz!, ~12!

wherek is a constant. Then, in terms of

p[dc/dj, j[t2cz, ~13!

Eq. ~10! transforms into a simple algebraic relation,

a25wz1
1
2 Dwt

21«wt
3. ~14!

Substituting Eq.~13! into Eq. ~11!, we make use of a
relation obtained by the differentiation of Eq.~14!,

d~a2!/dj5~Dp2c13«p2!~dp/dj!. ~15!

One should also recall that« is an independent small param
eter, and the velocityc sought for is expected to be;«,
hence it has the same smallness as«. Making use of Eq.~15!,
and omitting the second-order terms;c2, «2, and c«, we
finally cast Eq.~11! into the form

FDS 3

2
Dp21kD23cDp110«Dp316«kpG dp

dj

52~12p2!S k2cp1
1

2
Dp21«p3D . ~16!

This is a ‘‘master equation’’ in the present case,2D@1.
A soliton solution is singled out by the obvious bounda

conditions,a(j56`)50. As it follows from Eq.~14!, the
variablep(j), which is governed by Eq.~16!, must take, at
j56`, constant valuesp0 which nullify the right-hand side
of Eq. ~14!. Thus, Eq.~16! must be complemented by th
boundary conditionsdp/dj50 at j56`. As concerns the
constantsk and c, they are, as a matter of fact, unknow
eigenvaluesthat must be found as a part of the solution.

First, we consider the zero-order approximation in«, set-
ting «5c50. In this case, Eq.~16! further simplifies:

~3Dp212k!
dp

dj
5

2

D
~12p2!~2k1Dp2!, ~17!
e

ll-

-

and the values ofp providing fora250 are, according to Eq
~14!,

p056A22k/D. ~18!

Because Eq.~17! is the first-order ordinary differential equa
tion, its only possible nontrivial solution with the asymptot
values~18! at j56` is an antisymmetric@p(2j)5p(j)#
kink, which takes all the values from the interval

up~j!u<A22k/D. ~19!

Here, however, we encounter a problem, because, inside
interval ~19!, there are two valuesp56A22k/3D, at which
the denominator of the right-hand side of Eq.~17! vanishes,
hence the solution will be singular. Indeed, straightforwa
integration of Eq.~17! shows that, in a vicinity of a pointj0

at whichp56A22k/3D, the form of the solution is

~p7A22k/3D !2'7~2/3D !2A22k/3D~3D12k!~j2j0!.

~20!

As it follows from Eq. ~20!, the only way to avoid the sin-
gularity is to set

k52 3
2 D, ~21!

which yields the unknown eigenvalue in the present appro
mation. From the viewpoint of Eq.~17!, this implies that the
expression multiplyingdp/dj vanishes at the same poin
p251, at which the multiplier (12p2) on the right-hand side
vanishes. It then follows from Eq.~18! that the asymptotic
wave numbers arep0

253.
In the next approximation, we demand that, in the fi

order with respect to the small parameters« andc, the same
mechanism of canceling the singularity holds in Eq.~16!,
i.e., the expression multiplyingdp/dj must vanish atp2

51. A straightforward calculation yields

c/«51/3. ~22!

This is the eventual~and fairly simple! analytical result pre-
dicting the soliton’s velocity for2D@1.

IV. NUMERICAL RESULTS AND THEIR
INTERPRETATION

We performed systematic simulations of the CGL equ
tion ~1! with small values of the TOD parameter«. Most
results displayed below pertain to«51023, which, as was
explained in the Introduction, is the value of practical inte
est for smallD and uDu;1. Some essential results are al
presented for«51022. However, detailed results for« es-
sentially larger than 1023 are not reported here in this regio
of the values ofuDu, as they are very complex~hence, they
are less interesting for the applications!, and will be pre-
sented elsewhere. On the contrary to this, the results for
ficiently large negativeD, when the pulse turns out to b
very robust, turn out to be essentially the same for all r
sonably small« ~e.g.,«51022 and«51021). These results,
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which may also be of considerable interest for the appli
tions to the optical-fiber communications, are displayed
low.

As the initial configuration, we always took the exa
pulse solution given by Eqs.~2!–~4!. The simulations were
run on the basis of a finite-difference scheme in a wide
terval of the variablet, that was always chosen to be mu
larger than the pulse’s width. In order to prevent the poss
radiation emitted by the pulse from reappearing in the in
gration domain, we used a standard device, placing nar
strongly absorbing layers at the edges of the domain.

Because the linear-gain term makes the model intrin
cally unstable, the evolution always ends with a transition
a turbulentlike behavior through blowup. An example is d
played in Fig. 1 for«51023 andD5218. In this example,
the blowup starts at the very end of the simulated propa
tion distance. Actually, at this value ofD, the laminar-
propagation distance attains its maximum and is nearly in
pendent of«, as will be discussed below.

In addition to the model~1!, we have also considered
modified model, with the usual~fixed-frequency! filtering re-
placed by thesliding-frequencyfiltering @12#, which is a
popular means for suppression of theGordon-Haus jitterof
the soliton, induced by its interaction with the radiatio
spontaneously emitted by the amplifiers. In view of the co
siderable practical importance of the frequency sliding, i
quite relevant to investigate its impact on the soliton dyna
ics in the present model. To this end, Eq.~1! was modified as
follows @12#:

iuz1~ 1
2 D2 i !utt1uuu2u2 iu5 i«uttt12iVFut2 iVF

2u,

~23!

where VF[VF(z) is the sliding frequency, which is as
sumed to be a linear function ofz, VF(z)5dz, with a real
slope constantd.

A systematic study of basic features of the pulse’s evo
tion before the blowup reveals a number of nontrivial fe
tures that are summarized below. In the application to

FIG. 1. An example of the evolution of the pulse in the mod
~1! at D5218 and«51023, ending up with the onset of the ‘‘tur
bulence’’ via the blowup.
-
-

-

le
-
w

i-
o
-

a-

e-

-
s
-

-
-
e

optical fibers, such finite-propagation-length results
physically meaningful, as the fiber’s length in the experime
may be shorter than is necessary for the onset of the blow
but long enough to observe~and use! nontrivial features in
the preblowup dynamics, provided that the lamina
propagation distance essentially exceeds the pulse’sdisper-
sion length, see below. Moreover, as was mentioned in t
Introduction, in real physical systems the model can
modified by means of the boundary conditions, so that
blowup will not take place at all~e.g., in the fiber loop!.

The numerically observed features reported below w
collected from the propagation distances taken as 80% of
blowup-onset distance, in order to exclude the influence
possible irregularities starting shortly before the onset. In t
connection, it is first of all interesting to display the da
showing this 80% distance vs both control parameters of
model,D and«. In Fig. 2, the data are shown for«51023

and 1022. These plots reveal noteworthy peculiarities: t
solitary pulse remains stable much longer if the dispersio
normal, D,0, than when it isanomalous, D.0, and, on the
other hand, an almost flat maximum of the lamina
propagation distance is observed aroundD5218. This
means that, on the contrary to what is commonly assum
the best long-distance optical-pulse transmission may
achieved in thenormal-dispersionregime.

The strong stabilization observed at large negativeD can
be qualitatively explained. The explanation given below
related to the ‘‘perturbation-sweeping’’ mechanism that e
plains, for the CGL equation with the periodic boundary co
ditions, an effective stability of the circulating pulse in
parametric region where it was expected to be unstable@11#
~see also@14#!.

We start the explanation by noting that the linearization
Eq. ~1! yields the inverse group velocityC(v)52Dv for a
linear radiation mode with the frequencyv and amplitude
A1 ,u1;A1 exp(2ivt) ~here, we neglect a small contributio
from TOD!. This means that, at largeuDu, the most danger-

l FIG. 2. The laminar-propagation distance, defined as 80% of
distance at which the blowup takes place, vsD. The continuous
curve corresponds to the case«50, d50, while the three different
dotted curves correspond to the following cases:«50, d50.05; «
51022, d50, and«51023, d50 @recalld is the frequency-sliding
slope in the modified model~23!#.
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ous destabilizing perturbations are those with a small
quencyv, as, otherwise, the perturbation quickly travers
the integration domain~including its part occupied by the
pulse!, and is then absorbed at the edges. Besides that
damping by the filtering term is negligible for the low
frequency perturbation.

On the other hand, due to the presence of the s
focusing cubic term, a low-frequencyslowly movingpertur-
bation can be~temporarily! captured by the pulse~2! with

the large amplitudeA0'A 3
2 uDu when the perturbation hits

the pulse~note that, in a real optical communication line, o
is dealing with a quasiperiodic chain of the pulses, hence
absorbing boundary conditions replace, as a matter of f
the interaction of the radiation with the next pulse!. As a
result of the interaction with the pulse (u0), the low-
frequency perturbationu1 generates, through the four-wav
mixing induced by the cubic term, a conjugate wave com
nentũ1;u0

2u1* . According to Eqs.~2! and~3!, the conjugate
component has anonsmall frequencyV;2km'2), and
an enhanced amplitudeÃ1;A0

2A1 . These, in turn, give rise
to strong damping of the perturbation by the filtering ter
despite the circumstance that, for the original small f
quencyv, the filtering effect is negligible. Even if we do no
take into regard the above-mentioned fact that the pertu
tion may be temporarily captured inside the pulse, the
hanced amplitude and nonsmall frequency of the conjug
component predict the following estimate for the ratio of t

stabilizingeffectiveaverage filtering coefficientG̃ to the de-
stabilizing gain coefficientg:

G̃/g;V2A0
2~t0 /T!;20uDu~t0 /T!, ~24!

wheret0 andT are, respectively, the temporal width of th
soliton and the size of the temporal domain~actually,T the
temporal separation between adjacent pulses, in the ca
the pulse array in a long fiber communication line!, and the
above expressions forÃ1 andV have been used. The stron
stabilization in the case of large negativeD is evident in Eq.
~24!.

The laminar-propagation distance is not especially se
tive to the value of the TOD coefficient in the norma
dispersion region, but Fig. 2 demonstrates a significantsta-
bilizing effectof TOD in the region of anomalous dispersio
Note that a conspicuous stabilizing effect of TOD on t
propagation of the ‘‘breathing’’~vibrating! pulses in the
dispersion-managementmodel, i.e., the lossless model wit
periodically modulated sign-changing SOD coefficientD(z),
was discovered in Ref.@15#. Finally, we see in Fig. 2 tha
~quite naturally! the frequency sliding increases the lamina
propagation distance, but the increase is quite modest.

The simulations also reveal a novel specific feature of
last stage of the laminar evolution, which precedes
blowup: as is seen in Fig. 3~for «51023), at the valuesD
.Dcr'21.5, the pulse, shortly before the onset of t
blowup, suddenly stops and then begins to move in the
posite direction, demonstrating a strong acceleration. So
times, this happens with intermediate stops and reversa
the direction of motion. AtD,21.5, the pulse’s motion also
-
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demonstrates an abrupt acceleration, but this time with
the reversal of the original direction of motion. The critic
valueDcr of D, separating the cases of the reverse and di
acceleration, depends on«: it shifts farther into the normal-
dispersion region with the decrease of«; for instance,
Dcr(«51024)'22.0.

The most essential result describing the soliton’s mot
at the laminar stage, viz, the soliton’s normalized mean
locity c/«, averaged over the above-mentioned 80% blow
distance, vs the SOD parameterD, is presented in Fig. 4. As
is seen in the inset of this plot~corresponding to the cas
where 210<D<10 and «51023), there is a very steep
jump of the velocity at a critical valueDcr , which, up to the
accuracy of the numerical data, isthe sameas that which
separates the reverse and direct accelerations in Fig. 3

FIG. 3. Trajectories of the pulse motion on the plane~position,
propagation distance! for «51023 and various values ofD. The
abrupt acceleration of the pulse preceding the blowup is cle
seen.

FIG. 4. Numerically found normalized soliton’s mean velocit
c/«, corresponding to the propagation distance equal to 80% of
blowup distance, vsD(,210) for three different values of«
(1023, 1022, and 1021). The horizontal solid line is the asymptoti
value ~22! analytically predicted for large negativeD. In the inset,
the continuous curve shows the analytical prediction given by
~8! for positive and small negative values ofD, while the dots are
the numerical results obtained for«51023.
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the right of the jump, the numerically found dependen
c(D) is quite close to the analytical prediction given by E
~8!. In particular, in exact accord with the analysis, the n
merical and analytically predicted values of the velocity p
fectly coincide at the zero-dispersion pointD50, both giv-
ing c/«51.

As was explained in Sec. II, it is natural to expect that
analytical result~8! becomes irrelevant atD,0. A surprising
fact is that the departure of the numerical results from
analytical prediction occurs relatively late~at D'21.5),
and so abruptly. More work is necessary to understan
cause for this steep jump.

A less steep transition of the velocity, in the oppos
direction, is seen in Fig. 4, for various values of« ~i.e., «
51023, 1022, and 1021). For example, in the case«
51023, this transition takes place betweenD5220 and
230, and, atD<230, the observed velocity is very close
the constant value~22!, analytically predicted in Sec. III for
large negativeD. The latter result has an important purpo
as the laminar-propagation distance, to which the result~22!
pertains, is very large just at large negativeD.

Although the accuracy of the analytical prediction~22! is
expected to worsen as« is increased~the asymptotic analysis
explicitly assumed« to be a small parameter!, the predicted
asymptotic valuec/«51/3 is reached for«51022 and 1021

as well. However, as is observed in Fig. 4, the region wh
the prediction is correct gets shifted to the left: This is due
the fact that the larger values of« may only be compensate
~for the applicability of the predictionc/«51/3) by better
applicability of the GO approximation, which demands
broader pulse, and hence larger negativeD.

As was mentioned above, the results obtained for the
nite propagation distances are physically meaningful p
vided that the propagation distance essentially exceeds
dispersion length of the pulse ~2!, which is @1# zD
>p/Dk2m2>(11m2)/Dm for the essentially chirped
pulses atD,0, and zD>p/Dk2>(11m2)/D for the un-
chirped ones atD.0 @see Eqs.~2! and ~3!#. A few disper-
sion lengths is the propagation distance necessary for for
tion of the soliton. Using the data from Fig. 2, we conclu
that, for«51023, the ratio of the 80% blowup distance tozD
is very large forD,21, then it is;10 for 21,D,5, and
the ratio gets smaller forD.5, so that the results are les
relevant in the latter region. This consideration demonstra
once again, the potential of the pulse transmission in
filtered nonlinear optical fibers deep inside the norm
dispersion region.

The velocity also depends on the value of the TOD co
ficient «. In the case«51024, the dependencec(D) for
uDu<10 is similar to that for«51023 ~see inset of Fig. 4!,
with the jump shifted toDcr>22.0, so that the applicability
range for the analytical result~8! slightly expands in this
case. However, the numerical results for the velocity at p
tive and relatively small negativeD turn out to be very com-
plex at «51022 ~on the contrary to the simple results di
played above for sufficiently large negativeD at «51022

and 1021). Detailed consideration of this case is beyond
framework of the present work.
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V. CONCLUSION

In this work, we have studied in detail evolution of th
solitary pulse ~dissipative soliton! in the complex cubic
Ginzburg-Landau equation, which includes the Kerr nonl
earity, linear gain, fixed- or sliding-frequency filtering, an
as a small perturbation, the third-order dispersion, while
second-order dispersion may be anomalous, normal, or z
Starting from the exact localized-pulse solution to the CG
equation without TOD, we developed a perturbation theo
which treats a part of the effective perturbation genera
by TOD in an exact way, while the other part is treat
by means of the momentum-balance equation. The analy
prediction for the TOD-induced velocityc was compared to
numerical data, showing that the perturbative result is qu
accurate in the region of its applicability and beyon
provided the ratio of the second-order dispersion and fil
ing coefficientsD is >21.5. An alternative analytical ap
proximation, based on the ‘‘geometric-optics’’ techniqu
was developed for large negativeD, yielding an asymptoti-
cally constant velocity, which is found to be in good agre
ment with the numerical results forD<230 ~this, and still
larger, values ofuDu are physically meaningful!. In the
gap between the two regions of applicability of the analyti
approximations, novel features are found in the simulatio
at D'21.5, the dependencec(D) makes an abrupt jump
with the change of its sign, and a smoother transition
the opposite direction takes place at230,D,220. Nu-
merical simulations also reveal another unexpected feat
before the onset of the ultimate turbulent stage, the pu
suddenly develops a very large acceleration in the reve
direction atD.21.5, and without the direction reversal
D,21.5.

Another set of the numerical results shows the dep
dence of the preblowup propagation distanceL vs the control
parameters. The most essential result is thatL ~both its ab-
solute value and the value normalized to the pulse’s disp
sion length! is very large for sufficiently large negativeD
~i.e., deep inside the normal-dispersion region!, for which a
qualitative explanation is proposed. TOD does not consp
ously affectL in the normal-dispersion region, but stabilize
the propagation ~increasing L! at D.0. Finally, the
frequency-sliding filtering only slightly increasesL in com-
parison with the usual fixed-frequency sliding.
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